www.elsevier.com/locate/farmac

Il Farmaco 56 (2001) 625-628

Short Communication

Synthesis of new N,N-disubstituted 4-amino-5,6-dihydro-3-phenyl-2H-thieno[2,3-h]-1-benzopyran-2-ones

Mario Longobardi ^{a,*}, Emilia Mariani ^a, Alberto Bargagna ^a, Filomena Mazzeo ^b, Maria Redenta Vitelli ^b, Lucio Giordano ^b, Giuseppe Falcone ^b

a Dipartimento di Scienze Farmaceutiche dell'Università di Genova, Viale Benedetto XV, 3-1-16132 Genoa, Italy
 b Dipartimento di Medicina Sperimentale, Sezione di Farmacologia "Leonardo Donatelli", Facoltà di Medicina e Chirurgia, Seconda Universita' degli Studi di Napoli, Via S.Andrea delle Dame 8, I-80138 Naples, Italy

Received 14 December 2000; accepted 1 March 2001

Abstract

The synthesis of some N,N-disubstituted 4-amino-5,6-dihydro-3-phenyl-2H-thieno[2,3-h]-1-benzopyran-2-ones ($4\mathbf{a}-\mathbf{f}$), by reaction of phenylchloroketene with a series of N,N-disubstituted (E)-5-aminomethylene-6,7-dihydrobenzo[b]thiophen-4(5)-ones, followed by dehydrochlorination in situ of the primary adducts with DBN, is described. A moderate local anaesthetic activity was observed in the title compounds, particularly in $4\mathbf{e}$. © 2001 Elsevier Science S.A. All rights reserved.

Keywords: N,N-Disubstituted 4-amino-5,6-dihydro-3-phenyl-2H-thieno[2,3-h]-1-benzopyran-2-ones; Anaesthetic activity.

1. Introduction

In a previous paper [1], we reported the synthesis and the pharmacological screening of derivatives of the fused pyran heterocyclic system 2H-pyrano[2,3-f]quinazoline (1) endowed with platelet anti-aggregating and local anaesthetic activities, prepared from the primary adducts obtained by 1,4 cycloaddition of phenylchloroketene to N,N-disubstituted heterocyclic α -aminomethyleneketones.

$$C_6H_5$$
 NR_2

* Corresponding author.

E-mail address: longobar@unige.it (M. Longobardi).

Some years ago P. Schenone et al. [2] described the facile reaction of dichloroketene with N,N-disubstituted (E)-5-aminomethylene-6,7-dihydrobenzo[b]thiophen-4(5H)-ones (2) to give, after dehydrochlorination with triethylamine of the primary adducts, a number of N,N-disubstituted 4-amino-3-chloro-5,6-dihydro-2H-thieno[2,3-h]-1-benzopyran-2-ones derivatives of 2H-thieno[2,3-h]-1-benzopyrano heterocyclic system.

Such a fused pyran heterocyclic system, where the thiophene five-membered ring substitutes the pyrimidine six-membered ring of the above mentioned structure, seemed to us worth of attention in order to compare the changes induced in the pharmacological activities of 1 by this substitution. Therefore we have now synthesized and tested some N,N-disubstituted 4-amino-5,6-dihydro-3-phenyl-2H-thieno[2,3-h]-1-benzopyran-2-ones (4) prepared by a similar pathway.

2. Chemistry

The synthesis of N,N-disubstituted 4-amino-5,6-dihydro-3-phenyl-2H-thieno[2,3-h]-1-benzopyran-2-ones (4a-f), started by the polar 1,4 cycloaddition of

phenylchloroketene (prepared in situ from 2-chloro-2-phenylacetyl chloride and triethylamine) to a series of (E)-5-aminomethylene-6,7-dihydrobenzo[b]thiophen-4(5H)-ones ($2\mathbf{a}-\mathbf{f}$) [3] in toluene solution. As in similar cases [4], the resulting adducts $3\mathbf{a}-\mathbf{f}$ were unstable and were dehydrochlorinated in situ with DBN in an one-pot sequence to give the required final compounds $4\mathbf{a}-\mathbf{f}$.

The products obtained have been characterized on the basis of analytical and spectroscopic data.

A solution of 2-chloro-2-phenylacetyl chloride (2.84 g, 15 mM) in anhydrous toluene (30 ml) was slowly added (1 h) at room temperature under nitrogen to a stirred solution of enaminones (2a-f) (10 mM) and triethylamine (1.52 g, 15 mM) in the same solvent (130 ml). The mixture was filtered and the solution was

3. Pharmacology

Compounds **4a**–**f** were submitted to a preliminary screening for analgesic, anti-inflammatory, local anaesthetic, antiarrhythmic and platelet anti-aggregating activities.

4. Experimental

4.1. Chemistry

Melting points were determined with a Fisher–Johns apparatus. IR spectra were measured in CHCl₃ solution with a Perkin–Elmer 398 spectrophotometer. $^1{\rm H}$ NMR spectra were recorded in CDCl₃ solution on a Hitachi Perkin–Elmer R-600 (60 MHz) instrument, chemical shifts are reported as δ (ppm) relative to TMS as internal standard; J in Hz. Analyses for C, H, N were within $\pm\,0.2\%$ of the theoretical values.

treated with 1,5-diazabicyclo[4.3.0]non-5-ene (DBN) (1.86 g, 15 mM), refluxed for 4 h and evaporated under reduced pressure. The solid residue was dissolved in benzene and chromatographed on Florisil®, using benzene as eluent.

Yields were in general low in the case of aliphatic N,N-disubstitution ($\mathbf{4a}-\mathbf{d}$) and high in the case of partial or complete aromatic N,N-disubstitution ($\mathbf{4e},\mathbf{f}$).

Yields, mps and recrystallization solvents of compounds **4a**–**f** are reported in Table 1; IR and ¹H NMR spectral data are reported in Table 2.

4.2. Pharmacology

Analgesic activity was evaluated by hot plate test in mice [5]; anti-inflammatory activity was evaluated by carrageenan-induced paw edema in rats [6]; local anaesthetic activity was evaluated as infiltration anaesthesia by pinch-tail test in mice [7]; antiarrhythmic activity was evaluated as protection index against ecgraphic effects from aconitine in rats [8]; and platelet anti-aggregating activity was evaluated by the inhibitory test of platelet aggregation induced by collagen in vitro [9].

Table 1 N,N-Disubstituted 4-amino-5,6-dihydro-3-phenyl-2H-thieno[2,3-h]-1-benzopyran-2-ones **4a**-**f**

$$C_6H_5$$

Comp.	NR_2	Yield (%)	M.p. (°C)	Molecular formula	Analyses
4a	N(CH ₃) ₂	38	217–218 ^a	$C_{19}H_{17}NO_2S$	C, H, N
4b	1-Pyrrolidinyl	52	231–232 a	$C_{21}H_{19}NO_2S$	C, H, N
4c	1-Piperidinyl	28	218–219 a	$C_{22}H_{21}NO_2S$	C, H, N
4d	4-Morpholinyl	31	265–266 a	$C_{21}H_{19}NO_3S$	C, H, N
4e	$N(CH_3)C_6H_5$	70	236–237 a	$C_{24}H_{19}NO_2S$	C, H, N
4f	$N(C_6H_5)_2$	73	260–261 ^a	$C_{29}H_{21}NO_2S$	C, H, N

^a From ethyl acetate.

Table 2 IR and ¹H NMR spectral data of compounds **4a**–**f**

Comp.	IR (CHCl ₃ , cm ⁻¹)		1 H NMR (CDCl ₃ , δ ppm)		
	C=O	C=C			
4a	1678	1610, 1522	2.52 (s, 6 H, 2 CH ₃ N), 2.98 (s, 4 H, CH ₂ -5+CH ₂ -6), 7.10–7.60 (m, 7 H, CH-8+CH-9+5 H ar.)		
4b	1670	1610, 1512	1.54–1.90 (m, 4 H, 2 CH ₂ pyr.), 2.78–3.10 (m, 8 H, 2 CH ₂ N+CH ₂ -5+CH ₂ -6), 7.10–7.62 (m, 7 H, CH-8+CH-9+5 H ar.)		
4c	1675	1610, 1518	1.36–1.66 (m, 6 H, 3 CH ₂ pip.), 2.50–2.80 (m, 4 H, 2 CH ₂ N), 2.82–3.13 (m, 4 H, CH ₂ -5+CH ₂ -6), 7.08–7.69 (m, 7 H, CH-8+CH-9+5 H ar.)		
4d	1682	1610, 1518	2.65–2.81 (m, 4 H, 2 CH ₂ N), 2.99 (s, 4 H, 2 CH ₂ O), 3.58–3.78 (m, 4 H, CH ₂ -5+CH ₂ -6), 7.12–7.67 (m, 7 H, CH-8+CH-9+5 H ar.)		
4 e	1690	1598, 1518	2.28–2.58 (m, 2 H, CH ₂ -5), 2.75 (s, 3 H, CH ₃ N), 2.75–2.93 (m, 2 H, CH ₂ -6), 7.10–7.60 (m, 12 H, CH-8+CH-9+10 H ar.)		
4f	1692	1598, 1520	2.25–2.55 (m, 2 H, CH ₂ -5), 2.76–2.94 (m, 2 H, CH ₂ -6), 6.90–7.66 (m, 17 H, CH-8+CH-9+15 H ar.)		

5. Results and conclusions

All tested compounds showed weak or negligible analgesic, anti-inflammatory and antiarrhythmic activities. In comparison with derivatives 1, a decrease of platelet anti-aggregating activity has been evidenced and only a fair local anaesthetic activity was confirmed, particularly for compound 4e.

In the light of these results we can state that the thiophene/pyrimidine substitution in compounds 1 was not fruitful. Moreover the maintenance in 4a-f of local anaesthetic activity could enforce the assumption that this property was related only to the dihydrobenzopyranone moiety.

Acknowledgements

The authors would like to thank MURST (Cofinaziamento Nazionale) and CNR for financial support, and

A. Panaro C. Rossi and F. Tuberoni for analytical support.

References

- [1] M. Longobardi, E. Mariani, A. Bargagna, P. Schenone, S. Budetta, C. Losasso, M.L. Cenicola, D. Donnoli, D. De Santis, E. Marmo, 2*H*-pyrano[2,3-*f*] quinazoline derivatives with platelet anti-aggregating and other activities, Il Farmaco 46 (1991) 99–110.
- [2] L. Mosti, P. Schenone, G. Menozzi, G. Romussi, F. Baccichetti, F. Carlassare, F. Bordin, Synthesis and photobiological activity of N,N-disubstituted 4-amino-3-chloro-2H-thieno[2,3-h]-1-benzopyran-2-ones, 7-thioisosteres of 4-amino-3-chloroangelicins, II Farmaco Ed. Sci. 39 (1984) 81–94.
- [3] L. Mosti, P. Schenone, G. Menozzi, G. Romussi, Reaction of sulfene with heterocyclic N,N-disubstituted α-aminomethyleneketones. X. Synthesis of thieno[2,3-h]-1,2-benzoxathiin derivatives, J. Heterocycl. Chem. 19 (1982) 1057–1059.
- [4] M. Longobardi, A. Bargagna, E. Mariani, W. Filippelli, G. Falcone, I. Marabese, Synthesis and pharmacological activity of

- some *N,N*-disubstituted 1-amino-2-phenyl-3*H*,12*H*-naphtho-[1,2-*b*]pyrano[2,3-*d*]pyran-3-ones, Il Farmaco 51 (1996) 665–668
- [5] N.B. Eddy, C. Fuhrmeister Touchberry, J.E. Lieberman, Synthetic analgesics. Methadone isomers and derivatives, J. Pharmacol. Exp. Ther. 98 (1950) 121–137.
- [6] C.A. Winter, E.A. Risley, G.W. Nuss, Carragenin-induced edema in hind paw of the rat as an assay for anti-inflammatory drugs, Proc. Soc. Exp. Biol. Med. 111 (1962) 544–547.
- [7] C. Bianchi, A simple new quantitative method for testing local anaesthetics, Br. J. Pharmacol. 11 (1956) 104–106.
- [8] E. Marmo, G. Lampa, F. Rossi, A.P. Caputo, S. Chieppa, C. Vacca, C. Giordano, P. Pedone, Ricerche sperimentali sulla specificità ed aspecificità di un β-adrenolitico, il bunitrololo, Arch. Sci. Med. 135 (1978) 15–56.
- [9] E. Marmo, A.P. Caputo, C. Vacca, M. Cazzola, Interferenze tra alcuni antiflogistici e aggregazione delle piastrine, Riv. Farmacol. Terap. 5 (1974) 279.